Characterization of almost $L^p$-eigenfunctions of the Laplace-Beltrami operator
نویسندگان
چکیده
منابع مشابه
Eigenfunctions of the Laplace operator
The study of the Laplace operator and its corresponding eigenvalue problem is crucial to understand the foundations of 3D shape analysis. For that reason the most important mathematical properties of the Laplace operator in Euclidean spaces, its eigenvalues and eigenfunctions are summarized and explained in this report. The basic definitions and concepts of infinite dimensional function spaces,...
متن کاملHeat Kernel Smoothing Using Laplace-Beltrami Eigenfunctions
We present a novel surface smoothing framework using the Laplace-Beltrami eigenfunctions. The Green's function of an isotropic diffusion equation on a manifold is constructed as a linear combination of the Laplace-Beltraimi operator. The Green's function is then used in constructing heat kernel smoothing. Unlike many previous approaches, diffusion is analytically represented as a series expansi...
متن کاملAsymptotic Behavior of L2-normalized Eigenfunctions of the Laplace-beltrami Operator on a Closed Riemannian Manifold
Let e(x, y, λ) be the spectral function and χλ the unit band spectral projection operator, with respect to the LaplaceBeltrami operator ∆M on a closed Riemannian manifold M . We firstly review the one-term asymptotic formula of e(x, x, λ) as λ → ∞ by Hörmander (1968) and the one of ∂ x ∂ β y e(x, y, λ)|x=y as λ → ∞ in a geodesic normal coordinate chart by the author (2004) and the sharp asympto...
متن کاملData driven estimation of Laplace-Beltrami operator
Approximations of Laplace-Beltrami operators on manifolds through graph Laplacians have become popular tools in data analysis and machine learning. These discretized operators usually depend on bandwidth parameters whose tuning remains a theoretical and practical problem. In this paper, we address this problem for the unnormalized graph Laplacian by establishing an oracle inequality that opens ...
متن کاملThe Laplace-Beltrami-Operator on Riemannian Manifolds
This report mainly illustrates a way to compute the Laplace-Beltrami-Operator on a Riemannian Manifold and gives information to why and where it is used in the Analysis of 3D Shapes. After a brief introduction, an overview over the necessary properties of manifolds for calculating the Laplacian is given. Furthermore the two operators needed for defining the Laplace-Beltrami-Operator the gradien...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2013
ISSN: 0002-9947,1088-6850
DOI: 10.1090/s0002-9947-2013-06004-7